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Goldstone mode singularities in specific heats and 
non-ordering susceptibilities of isotropic systems 

I D Lawrie 
Department of Physics, T h e  University, Leeds, LS2 9JT, UK 

Received 5 July 1984, in final form 27 November 1984 

Abstract. Goldstone mode singularities in non-ordering correlation functions of the O( N )  - 
symmetric 44 theory are investigated in 4 - E dimensions. Functions constructed from 
non-invariant combinations of the transverse operator r2 and the longitudinal operators 
u2 and U generally exhibit severe infrared divergences on the coexistence curve. In 
low-order perturbative calculations of, for example, the specific heat, however, these 
divergences cancel. Such cancellations are shown to be a general feature of O( N)-symmetric 
correlation functions. Non-leading singularities remain, and lead to momentum depen- 
dence which can be expressed as a double power series in lpl' and Ip/'-'. 

1. Introduction 

It is well known that the ordering susceptibilities of isotropic systems diverge at the 
coexistence curve. If H is the external field coupled to the order parameter (e.g. a 
uniform magnetic field in the case of an isotropic ferromagnet) then in d = 4 - E 

dimensions, the transverse and longitudinal susceptiblities behave as H - '  and H-"'* 
respectively as H + 0. Alternatively, at H = 0, the correlation functions, or momentum- 
dependent susceptiblities diverge as p - 2  and p-' for small momenta p (see e.g. Schafer 
and Homer 1978, Lawrie 1981 and references therein). More generally, one may expect 
singularities of this type to appear in all quantities associated with the response to the 
ordering field. 

Unfortunately, this striking behaviour is not to be expected in real magnetic systems, 
where one never has perfect isotropy. In superfluids, on the other hand, the complex 
condensate wavefunction does provide a perfectly isotropic, two-component order 
parameter, but no ordering field is available in the laboratory. Here, one is restricted 
to studying the response to non-ordering perturbations, as revealed for example by 
specific heats and energy or entropy correlation functions (see e.g. Dohm and Folk 
1980, 1981). From explicit calculations, it appears that the specific heat has a finite 
limit at the coexistence curve (BrCzin er a1 1974, Bervillier 1976, Chang and Houghton 
1980). However, the general structure of non-ordering susceptibilities with respect to 
Goldstone modes does not seem to be widely understood, and it is this structure that 
we discuss in the present work. 

In B 2,  we describe how renormalisation group methods (Lawrie 1981) can be used 
to study Goldstone mode singularities in perturbation theory. The limiting form at 
coexistence of the generating function for non-ordering correlation functions is derived 
in § 3, and an exponentiated form of the entropy correlation function in the critical 
region is obtained in § 4. Our main conclusions are summarised in § 5 .  

0305-4470/85/071141+ 12$02.25 @ 1985 The Institute of Physics 1141 
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2. Perturbation theory 

We work with the familiar O( N)-symmetric Landau-Ginzburg-Wilson Hamiltonian 
density 

in which 4 is an  N-component field and c # ~ ~ =  4.4. Near the critical point, it suffices 
to take uo as a positive constant and ro as linear in temperature. Consequently, the 
singular part of the entropy correlation function is given by 

where the connected functions are 

and  the singular part of the specific heat is 

(2.4) 

Below the critical temperature, and in the absence of an  ordering field, it is 
convenient to subtract from 4 its expectation value, and  we write 

4 = ( a  + ( 3 / ~ ~ ) " ~ m ~ ,  n)  (2.5) 

where mo(ro, uo)  is defined so that both the longitudinal field a and the ( N -  1 ) -  
component transverse field n have zero expectation value. We then have 

CO(X - Y )  = ~ 7 T 2 ( ~ ) 7 T 2 ( Y ) ) c + ( ~ 2 ( x ) ~ ~ ( Y ) ) , + 2 ( ( + 2 ( x ) 7 T 2 ( y ) ) c  

+ 4( 3/ uo) "*mo( ( n 2 ( X )  a ( Y  ))c +- ( a2( X ) a ( Y  ) ) C )  + ( 1 2/ uo) mi( a( X ) a(,V )) 
(2.6) 

where T * ( X )  = n ( x ) - n ( x ) .  The Feynman diagrams which contribute to this function 
up  to one loop order are shown in figure 1. Three of these, namely ( a ) ,  (c) and ( i )  

0 - \  

- 0 :__I -0.- -+'--;+ 
'- / 

l e )  i f )  (g) I h )  ( 1  1 

Figure 1. Tree and one-loop diagrams contributing to the entropy correlation function 
C , ( x - y ) .  Full and broken lines are respectively longitudinal (U) and transverse ( T )  

propagators. Wavy external lines correspond to the operator u2 or T* according to the 
internal lines to which they attach. 
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have infrared Goldstone singularities, owing to the massless transverse propagators. 
However, their sum is exactly zero, so that the function has no overall singularity at 
this order. 

The question arises whether such cancellations are to be expected at all orders of 
perturbation theory and in other correlation functions. On the basis of an argument 
due originally to S Elitzur (see e.g. Amit and Kotliar (1980) and David (1981) for a 
discussion in the context of nonlinear (T models) one expects that any function 
constructed from O( N )  invariant operators such as 4 2  should indeed be infrared finite 
except possibly at the critical point. In fact, Chang and Houghton (1980) have obtained 
a finite two-loop expression for the specific heat, and one may check at low orders 
that, for example, the Goldstone mode contributions to ( 4 2 ( x ) 4 2 ( y ) 4 2 ( z ) ) c  do cancel, 
leaving a finite result. 

For the two-dimensional ( 42)2  model, Jevicki (1977) has noted thatsimilar cancella- 
tions occur in low-order perturbative calculations of the ground-state energy, and has 
conjectured that they should persist to all orders. In two dimensions, of course, the 
spontaneous ordering which appears at the classical level is destroyed by Goldstone 
mode fluctuations, and there is thus no coexistence curve. It is therefore somewhat 
remarkable that some information can be obtained by perturbing about the classical 
ground state. ( I  thank a referee for reminding me of Jevicki’s paper.) 

The following sections discuss how the expectation of infrared finiteness is realised 
within a renormalisation group scheme which deals explicitly with Goldstone mode 
singularities (Lawrie 1981). In this scheme, a fixed point controlling behaviour on the 
coexistence curve is identified as follows. 

(i)  The longitudinal field (T is rescaled according to 

u = s / m  (2.7) 

where m is a renormalised version of the order parameter m,. 
(ii) Each renormalised correlation function F ( { p } ,  U, m, K )  satisfies a relation of 

the form 

F({API, U, m, K )  = m n F ~ d F P ~ ( A ,  U, m ) f ( { P / K I ,  G ( A ) ,  f i ( A ) ) .  (2.8) 

In this equation { p }  denotes a set of momentum arguments, U is a renormalised 
coupling constant and K is an arbitrary renormalisation mass scale, which serves to 
make U and m dimensionless. The power n F  is that implied for the function F by 
(2.7) and d F  denotes the canonical dimension of F. The renormalisation group func- 
tions satisfy PF( I, U, m )  = 1, C( 1) = U and f i (  1 )  = m. In  the infrared limit A + 0 with 
m > 0, the effective coupling G ( A )  approaches a fixed point U** - E / (  N - 1 )  +0( E * )  

while the effective mass diverges as t i i ( A )  = m / A  I-‘’’. The renormalisation prescription 
which leads to this behaviour incorporates the requirement that at each order of the 
double expansion in U and E ,  f ( { p } ,  U, zo) has a finite non-zero value. Consequently, 
the leading infrared singularity of F is contained in the prefactor P F ( A ) .  

(iii) The leading singularity can be studied in the unrenormalised theory by making 
the substitution (T = s/ m, and taking the limit mo+ zo at fixed U,,. This leads to a 
Gaussian fixed-point ensemble, which generates the functions f ( {  p } ,  U, m) in terms of 
zero- and one-loop diagrams. 

The leading singularity in (2.8) is contained in the asymptotic form of the prefactor 
P$*(A) = PF(A, U**, 00). One may write 

(2.9) f ( { A p } ,  U**, m) = P $ * ( A ) f ( { p } ,  U**, 
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though this is a trivial statement, sincef({ p } ,  U**, 00) is exactly calculable. The singular 
behaviour of F may thus be expressed as 

F({Ap} ,  U, 111, K )  2. mnFKdF ~ F ( U ,  m ) F ( { A p } ,  U**, 00) (2.10) 

where the amplitude pF(u, m )  is finite on the coexistence curve but will, in general, 
exhibit a critical singularity as m + 0. Near the critical point, (2.10) is valid only when 
the limit A + 0 is taken in advance of the limit m + 0. More generally, one may expect 
that (2.10) will be a good approximation when the set of quantities { p / K m " I P }  are all 
small, where v and p are the usual correlation length and order parameter exponents. 
We note that our description of the infrared singularities applies to the case in which 
all momenta { p }  assume uniformly small values. Cases of 'exceptional' momenta, in 
which some partial sums of the p vanish while others remain non-zero will, in general, 
produce infrared singularities not covered by the present discussion. Finally, if correla- 
tion functions are evaluated at zero momentum, but in the presence of an ordering 
field H, then the same Gaussian ensemble describes the limit H + 0 or, indeed, the 
general case of small H and { p } .  In these cases, m still denotes the zero-field value 
of the order parameter and a has an expectation value roughly proportional to H. 

3. Singularities on the coexistence curve 

We now construct a generating functional for correlation functions constructed from 
the operators a ( x )  and +'(x) = v2(x)+  a 2 ( ~ ) + 2 ( 3 / ~ o ) ' ~ 2 m o ( + ( ~ ) + 3 m ~ / u , .  To this 
end, we augment the Hamiltonian (2.1) by writing 

Xx = 2- IO(X) (4* (X)  -(4*)) - Ho(x)c+(x) -"o(~o, ro, K )  (3.1) 

where ,(. . . ) denotes an expectation value in the absence of the sources lo and H,, and 
Bo provides an additive renormalisation at mass scale K of the entropy correlation 
function ( 4 * ( x ) 4 * ( y ) ) .  When analysing the critical singularities, Bo can be taken as 
independent of ro. For our purposes a dependence on ro is essential. Provided that 
this dependence is non-singular near the critical point ro = roc, the analysis of infrared 
behaviour is not prejudiced. According to 9 2 ,  the asymptotic behaviour involves the 
field s = moa, and we therefore rescale the source Ho by Ho(x) = ( 3 / ~ ~ ) l / ~ m , h ( x ) .  The 
generating functional of connected functions is now defined by 

On taking the limit m0+m, we find that Xs acquires the form 

Xs = 41Vnl2 + i h r 2 +  is' - (6,' uO)( lo+;h)* 

+ ( 6 / ~ ~ ) ( Z o + $ h ) A +  lo(n*)-fl& (3.3) 

S = s + f (  u , / 3 )  T*  + (3/  uO) ' / * A  - 2( 3/ uO) "*( lo + i h  ) (3.4) 

where the shifted longitudinal field 

is now decoupled from the remainder of the Hamiltonian. The counterterm A is 
determined perturbatively by 

r,= - i m ; + A ( u o ,  m,) (3.5) 
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together with the condition ( u ) = O .  In the limiting ensemble (3.3), it has only the 
one-loop contribution 

A = - (6) N-1 I ddq q2 

required to satisfy 6G/ 6h = 0 when h = 0, and we also have ( 7 ~ ’ )  = -6A/ uo. 

exactly. We obtain 
Since the limiting ensemble is Gaussian, the generating functional can be evaluated 

(3.7) 

-$(N-1)Tr ln( -V2+h) .  

When I ,  and h are taken to be independent of position, we obtain the generating 
function for correlation functions at zero momentum: 

(1,+~h)2+(~o/12)I$o 

1 N - 1  + (-) 1 2 E  SuOh2-‘” B( 1 + + E ,  1 - + E ) /  (2 - ; E )  (3.8) 

where V is the volume of the system, S = 2 ~ ~ ” / ( 2 ~ ) ~ ( + d - 1 ) !  and B ( a , p )  is the 
Euler beta function. The one-loop term has been evaluated by standard dimensional 
regularisation methods and has a simple pole at E = 0. This pole may be eliminated 
by introducing renormalised parameters U and 1, defined by 

U , = K ‘ U Z ( U )  / o = I z ( u )  (3.9) 

where 

Z ( u ) = [ l  - ( N -  ~ ) S U / ~ E ] - ’  

and K is an arbitrary mass scale, and by taking 

Bo= -2 (N-  l)(S/E)K-BZ-’(U). 

This gives 

V-’G(I, h )  = ( ~ / u ) K - ‘  { ( I + + h ) ’  

(3.10) 

(3.1 1 )  

(3.12) 

Of course, the same prescription (3.9)-(3.11) will serve to renormalise (3 .7) .  Taking 
into account that the source 1 has canonical dimension two we obtain the renormalisa- 
tion group functions 

W ( u )  = K? I = - E U [ ~ -  ( N -  1 ) S u / 6 ~ ]  
a K  ug 

(3.13) 

= 2 - ( N -  1)Su/6 (3.14) 
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and identify the infrared-stable fixed point Su** = 6 ~ / (  N - 1)  and the scaling exponent 

From (3.7) and (3.12) we see that, in the limiting coexistence ensemble, all the 
connected correlation functions involving c$~(x )  vanish except for ( + 2 ( x ) ~ 2 ( y ) ) c  and 
(42 (x ) s (y ) )c  which are simply proportional to 6(x - y ) .  Their Fourier transforms are 
therefore just finite constants. By contrast, all correlations of the longitudinal field, 
coupled to h, have infrared singularities arising from the one-loop integral. This result 
is unfortunately less powerful than it might appear, though it could be indicative of 
a stronger one. Let us ignore temporarily the explicit form of the generating functional 
and define the limiting correlation functions g c ' ( x ,  . . . x,) by 

y (  U**) = 2 - E. 

G({l,,}, 0) = E  11 ddx, . . . ddx, /,,(XI) . . . lo(x,)gb"'(xl . . . x,,). (3.15) 
n .  

The renormalisation induced by (3.9) is g(,' = 2 " g r '  and, for the Fourier-transformed 
functions, dimensional analysis gives 

(3.16) 

Taking into account the explicit K dependence of gb2' through Bo, we obtain the 
renormalisation group equation 

g'"'({Ap}, u ,K}=-BS, ,~  

where 

B EZ z 2 K -  (3 BO 
aK 

At the fixed point U = U** 

= 2 (  N - 1 ) K - ' s .  
U0 

the solution is 

(3.17) 

(3.18) 

(3.19) 

which, apart from the inhomogeneous term for n = 2 is of the form (2.9). Now (3.12) 
shows that this is trivially satisfied by 

(3.20) 

and that the amplitudes of the leading singularities in each of the original correlation 
functions vanish identically. This is clearly a consequence of symmetry and assures 
us that the perturbation theory cancellations noted in 8 2 do indeed persist to all orders 
and in all correlation functions constructed from the invariant operator 4*. However, 
this does not prove, in general, that the original functions G'"' ( {p } ,  U, m, K ) ,  whose 
limits are 

G'"' ( {p } ,  U**, a, K )  = g ' " ' ( { p } ,  U**, K )  (3.21) 

vanish, or are even finite in the infrared limit, though we suspect that some such result 
may hold. This is because, for n > 2, the leading power of A in (3.19) is negative, and 
the possibility that corrections, proportional to powers of ( A 2 - ' / m 2 )  for finite m could 
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yield residual, though less severe singularities is not ruled out by our arguments. The 
analysis of such corrections, which are not merely integer powers of ( A 2 - ' / m 2 ) ,  does 
not seem to be at all straightforward. 

In the case n = 2 ,  which is of the greatest physical interest since it gives the singular 
part of the entropy correlation function and  specific heat, the leading power of A in 
(3.19) is positive (below four dimensions). The preceding remarks d o  not apply and  
(3.20) can be taken at face value. However, (3.20) does not yield the critical singularity, 
which is contained in a prefactor similar to pF in (2.10) and  must vary as m-n'P as 
m + 0. This is studied in more detail in the following section. 

4. Specific heat and entropy correlation function 

In this section, we use the full renormalised theory, to order E ,  to exhibit both the 
crossover to critical behaviour and  the general momentum dependence of the entropy 
correlation function. It is convenient to expand the generating functional (3.2) as 

where M = 1(4)1= ( 3 / ~ , ) " ~ m ,  and integrations over coordinate arguments as in (3.15) 
are implied. In this representation, lo couples to ( r2+  g 2 )  and ( H0+ 2 MZo) couples to 
U. The functions Gb"'."' are the connected correlation functions of the corresponding 
operators except that Grs2 '  also contains the counterterm Bo. One-particle irreducible 
vertex functions may as usual be obtained by Legendre transformation. The first few 
are given by 

(4.2) 

(4.3) 

(4.4) 

ry,o) = 1/  Gb2.0) 

r b l . ' ) = 2 M +  Gb'.1!/GF,O) 

rr.2' = (3'0.2' - (c;b'.'1)2/ Gy.0' 

The entropy correlation function, defined as 

may be expressed as 

The functions Gb"."' are not multiplicatively renormalisable; their utility lies in the 
ease of identifying Feynman diagrams which contribute to them. However, the vertex 
functions rLm3"' are multiplicatively renormalisable. We have described in detail 
elsewhere (Lawrie 198 1 )  a renormalisation scheme which interpolates between the 
coexistence limit of 5 3 and  the critical limit. Briefly, we define perturbatively a 
renormalised temperature-like parameter T which, when it is small is proportional to 
(roc - ro) and when it is large is proportional to mi. In a region near the critical point, 
including the coexistence curve, T is always small, and  may be taken as linear in 
( 7,- 7). However, the running parameter ? ( A )  into which it is mapped by the 
renormalisation group becomes infinite at the coexistence curve, and the renormalis- 
ation scheme ensures that the vertex functions remain finite in this limit after extraction 
of an overall power of T corresponding to mnF in (2.8). 
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At one-loop order, we find that the renormalised vertex functions r(m,n) = Z,:rbm3"' 
satisfy the renormalisation group equation 

a a 
a h  a u  a7 

A-- W-+ y7-- d + ( i d  - 1)m + yn r(m,n)({Ap}, U, 7, K )  

w = -&U + (6 N + 8  - -) 37 su2 
3+27 

s u  

(4.8) 

(4.9) 

(4.10) 

We have ignored the wavefunction renormalisation which is required only at higher 
orders. In the limit r+m, we evidently reproduce (3.13), (3.14), (3.17) and (3.18). At 
the critical point r = 0 we have the usual fixed point Su* = 6 ~ / (  N + 8 )  +O(E ' )  and 
v = l / y ( u * )  =gl + ( N + ~ ) E / ~ ( N + ~ ) + O ( E ~ ) ]  reproduces the usual expansion for the 
correlation length exponent. 

It is helpful, as suggested by (3.12), to define rescaled vertex functions !?(m3n)= 

( U /  12)"'2r'm9"1, which satisfy the equation 

a a 
a A  a u  ar 

A- - W-+ yr- - d + ( id - 1)m + ( i d  + &)n f(m,n)({Ap}, U, r, K )  

& ( u , r ) = y -  W / 2 u - f d = -  su. 

(4.11) 

(4.12) 

At the coexistence fixed point, we have &(U**, CO) = - ; E ,  while at the critical point, 
the expression 

(4.13) 

To evaluate the renormalised correlation function C = Z,:CO, we need vertex 

&(U*, 0) = (4-  N ) E / ~ (  N + 8 )  + O ( E ' )  

may be identified as the combination a / 2 v  of critical exponents. 

functions for which m + n = 2. For these, the solution of (4.1 1 ) may be written as 

f(2-n9n'(p, U, r )  = A2-"Pn'*(A, U, r ) f ' 2 - " * " ' ( p / A ,  i i ( A ) ,  7 ( A ) ) + 6 , , 2 R ( A ,  U, r )  (4.14) 

where, as usual, A is an arbitrary scale parameter, and characteristic functions are 
defined as the solutions of 

a n  
a h  

A-= W(ii, 7) (4.15) 

a? 
a h  A-=-y(i i ,F)F (4.16) 
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(4.17) 

U /  12)B( 0,b) (4.18) 

with the initial conditions 0 = U ,  7 = r, P = 1 ,  R = 0 at A = 1 .  The functions f‘(2-n3n) are 
given, to first order of the expansion in U and E by 

aR 
ah 

A - = - P ( A ) ( -  

(4.19) 

(4.20) 

(4.21) 

where 

(4.22) 

and the mass scale K ,  which plays no further role has been set equal to one. Each of 
these functions has a logarithmic singularity when p 2  + 0, but remains finite when 
r+co. On the right-hand side of (4.14), we therefore exponentiate the singularities by 
choosing A = IpI. 

We offer approximate solutions to (4.15)-(4.18) which have all the required analytic 
properties in A = Ip /  and r. We define first the auxiliary function Q by 

Then 7 is defined implicitly by 

and U by 

Finally, we give 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 
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One may verify that these are indeed solutions, up to corrections of order E ’ .  Although 
they differ from the solutions given by Lawrie (1981), they are equivalent to these at 
order E.  The rationale for the particular expressions we have written down lies in their 
analytic structure, and limiting behaviour which is implied by the renormalisation 
group equations, and which we now discuss. 

( i )  The limit IpI = 1 .  As required by the initial conditions, we have Q = P = 1, 
U = U*, .? = r, R = 0. The special choice U = U*, which eliminates some corrections to 
scaling, has been made to facilitate the solutions. 

(ii) The limit 7’0, Ipl+O. We keep the ratio q = l p I ~ - ’  fixed. When q is large, 
we have the singularity characteristic of the critical point, namely .? = q - ’ / y ,  Q = 1, 
U = U*, P = I p l - Q / y ,  R = Nlpl-”’”/(4- N), with corrections appearing as integer powers 

(iii) The limit lpI+O, r>O, N # 1 .  In this limit q is small, and we have the 
singularity characteristic of the coexistence curve. In the critical region, we may take 
Ipi”’<< r<< f. Then .? is large, and we have 

of q-11”. 

N + 8  U = U ** = U* (-) + O( E 2 ) .  
N-1 

If we define the function t ( q )  by .T = q ‘ - ’ t (q ) ,  then (4.24) gives 

with 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

We see that f ( q )  has a double expansion in q E  and q2-‘ which will, of course, contain 
integer powers of q2.  Corrections to these exponents of order are not expected, 
since the limiting coexistence ensemble is Gaussian. For P and R we have 

R = l + -  4 ( r - Q - l ) - -  ( - N+8)(j),,[4-($)-”N]qE+, . . 
4 -  N 4 - N  N-1 

(4.32) 

(4.33) 

where the dots denote higher powers of q E  and q2-‘. 

behaviour of .? may be described by .? = q - 2 t ( q )  where t ( q )  satisfies 
(iv) The limit IpI + 0, r > 0,  N = 1 .  When N = 1, we have Q = 1. The limiting 

= ($ + q 2 ) 2 ” - l  t(0) = (3)’” (4.34) 

and is clearly analytic in q2.  This property, expected for an Ising-like system away 
from its critical point, carries over to the functions P and R. Sadly, we also have 
U = u*q-‘,  so that when one substitutes the expressions (4.19)-(4.21) into the right-hand 
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side of (4.14), some weak, artificial singularities remain. This is because the fixed point 
U** no longer exists when ++CO,  and the choice A = ( p /  is inappropriate. Since the 
In p 2  terms are now absent, we may instead impose, say, the condition i: = 1. Now lpl 
in (4.24)-(4.27) is replaced by A and the condition ? =  1 implies A = T "  and p / A  = q. 
Each correlation function is now analytic in q 2  and Goldstone mode singularities are 
absent, as they must be. 

If we ignore residual corrections from the one-loop terms in (4.19)-(4.21) the 
entropy correlation function is given by 

(4.35) 

which describes the leading singularities as delivered by the renormalisation group. 
Some further ingenuity is needed to effect a complete exponentiation. For small q, 
this function may be written as 

(4.36) 

The first term clearly corresponds to (3.20) with n = 2, and the second contains the 
usual critical singularity of the specific heat. The third term represents the leading 
momentum-dependent correction, and we note that its amplitude remains finite and 
non-zero when the exponent a vanishes. Nicoll (1980) has also obtained an expression 
for C ( p ,  T )  in which the corrections vanish as p E .  

5. Conclusions 

We have studied the effect of Goldstone modes on correlation functions involving the 
O( N )  invariant operator ( 42 - ( $2))  for an exactly isotropic system below its critical 
point. In the limiting ensemble which describes the zero-momentum behaviour of 
these functions, the source of this operator (that is, the field thermodynamically 
conjugate to it) does not couple to the transverse fields. Consequently, when the 
functions are evaluated in perturbation theory, the purely transverse diagrams are 
guaranteed to cancel exactly at each order. In particular, the entropy correlation 
function has a zero-momentum limit which yields a finite, non-zero specific heat. 
However, residual Goldstone mode singularities appear in the momentum-dependent 
part, which may be expressed as an infinite series of terms of the form Iplme+"(*-')  
where m and n are positive integers. In three dimensions, this amounts to a power 
series containing both even and odd powers of jpi .  For Ising-like systems, N = 1, one 
obtains only integer powers of p 2 .  We have obtained a one-loop approximation to the 
entropy correlation function which exhibits these features, as well as the usual critical 
scaling properties. However, the numerical details should probably not he taken too 
seriously. 
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